Jupiter: Aerosol Chemistry in the Polar Atmosphere.

نویسندگان

  • Wong
  • Lee
  • Yung
  • Ajello
چکیده

Aromatic compounds have been considered a likely candidate for enhanced aerosol formation in the polar region of Jupiter. We develop a new chemical model for aromatic compounds in the Jovian auroral thermosphere/ionosphere. The model is based on a previous model for hydrocarbon chemistry in the Jovian atmosphere and is constrained by observations from Voyager, Galileo, and the Infrared Space Observatory. Precipitation of energetic electrons provides the major energy source for the production of benzene and other heavier aromatic hydrocarbons. The maximum mixing ratio of benzene in the polar model is 2x10-9, a value that can be compared with the observed value of 2+2-1x10-9 in the north polar auroral region. Sufficient quantities of the higher ring species are produced so that their saturated vapor pressures are exceeded. Condensation of these molecules is expected to lead to aerosol formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benzene and Haze Formation in the Polar Atmosphere of Jupiter

[1] Jupiter has a large magnetosphere that episodically precipitates large amounts of energy into the polar atmosphere, giving rise to intense auroras [Clarke et al., 1996; Grodent et al., 2000]. An important consequence of this energy influx is the production of a dark haze [Pryor and Hord, 1991], the formation mechanism of which was hitherto poorly known. Recent observations of benzene on Jup...

متن کامل

Aerosol influence on energy balance of the middle atmosphere of Jupiter

Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alon...

متن کامل

Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere

Secondary organic aerosol (SOA), particulate matter composed of compounds formed from the atmospheric transformation of organic species, accounts for a substantial fraction of tropospheric aerosol. The formation of lowvolatility (semivolatile and possibly nonvolatile) compounds that make up SOA is governed by a complex series of reactions of a large number of organic species, so the experimenta...

متن کامل

Volatility and aging of atmospheric organic aerosol.

Organic-aerosol phase partitioning (volatility) and oxidative aging are inextricably linked in the atmosphere because partitioning largely controls the rates and mechanisms of aging reactions as well as the actual amount of organic aerosol. Here we discuss those linkages, describing the basic theory of partitioning thermodynamics as well as the dynamics that may limit the approach to equilibriu...

متن کامل

Obtaining Calibrated Marine Aerosol Extinction Measurements Using Horizontal Lidar Measurements, Differential Lidar-Target Measurements and A Polar Nephelometer

Lidars are ideal for mapping the spatial distribution of aerosol concentrations, however efforts to convert the lidar measurements into estimates of the aerosol extinction or scattering coefficient are usually complicated. The difficulties arise from the uncertainty in the aerosol backscatter-to-extinction ratio and the lidar calibration. In marine conditions with little absorption, the aerosol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Astrophysical journal

دوره 534 2  شماره 

صفحات  -

تاریخ انتشار 2000